Segitiga istimewa adalah segitiga yang mempunyai sifat-sifat khusus istimewa. Dalam hal ini yang dimaksud segitiga istimewa adalah segitiga siku-siku, segitiga sama kaki, dan segitiga sama sisi. Berikut ini akan kita bahas mengenai sifat-sifat dari segitiga istimewa tersebut. 1. Segitiga Siku-Siku Segitiga siku-siku dapat dibentuk dari sebuah persegi panjang dengan menarik salah satu garis diagonalnya. Perhatikan gambar berikut Bidang ABCD adalah persegi panjang. Dengan menarik diagonal AC, akan terbentuk dua segitiga siku-siku yang sama dan sebangun konruen yaitu ΔABC dan ΔADC. Segitiga siku-siku mempunyai dua sisi siku-siku yang mengapit sudut siku-siku dan satu sisi miring hypotenusa ΔABC mempunyai ciri-ciri AB dan BC sebagai sisi siku-siku, AC sebagai hypotenusa dan sudut ABC atau sudut B adalah sudut siku-siku = 90° Dalam sebuah segitiga siku-siku, hypotenusa selalu terletak di depan sudut siku-siku. 2. Segitiga Sama Kaki Dua buah segitiga siku-siku yang kongruen dapat membentuk sebuah segitiga sama kaki dengan mengimpitkan salah satu sisi siku-siku yang sama panjang dari kedua segitiga tersebut. Perhatikan gambar berikut ΔABD dan ΔDBC adalah dua segitiga siku-siku yang kongruen. Sisi BD adalah sisi siku-siku yang sama panjang dari kedua segitiga tersebut. Jadi ΔACD adalah segitiga sama kaki dengan sisi AD=DC. Di dalam segitiga sama kaki terdapat Dua sisi yang sama panjang, sisi tersebut sering disebut kaki segitiga. Dua sudut yang sama besar yaitu sudut yang berhadapan dengan sisi yang panjangnya sama. Satu sumbu simetri. Segitiga sama kaki merupakan bangun simetri lipat dan dapat menempati bingkainya dalam dua cara. Dari gambar disamping terlihat bahwa CD sebagai sumbu simetri A pindah ke B; B pindah ke A dan C tetap. AC pindah ke BC, maka AC=BC. CAB pindah ke ABC maka CAB = ABC 3. Segitiga Sama Sisi Tiga buah garis lurus yang sama panjang dapt membentuk sebuah segitiga sama sisi dengan cara mempertemukan setiap ujung garis satu sama lainnya. Gambar i di atas menunjukkan gambar tiga garis lurus yang sama panjang, yaitu AB= BC=CA. Apabila ujung-ujung ketiga garis tersebut saling dipertemukan, A dengan A, B dengan B, dan C dengan C, maka akan terbentuk segitiga sama sisi ABC seperti terlihat pada gambar ii di atas Di dalam segitiga sama sisi terdapat Tiga sisi yang sama panjang. Tiga sudut yang sama besar. Tiga sumbu simetri. sumber
Meskipunsetiap gunung berslogan 'Gunung Bukan Tempat Sampah' namun banyak sekali pendaki yang tidak menghiraukannya. Apalagi Gunung Gede Pangrango merupakan salah satu gunung favorit bagi para
Unduh PDF Unduh PDF Salah satu tantangan saat menciptakan suatu sudut adalah menjadikannya siku-siku. Walaupun kamar Anda tidak perlu berbentuk persegi sempurna, yang terbaik adalah mendapatkan sudut-sudut yang ukurannya mendekati 90 derajat. Jika tidak, keramik ataupun bentangan karpet akan jelas terlihat 'miring' dari satu sisi ruang ke sisi lain. Metode 3-4-5 juga bermanfaat untuk proyek pekerjaan kayu yang lebih kecil, untuk menjamin bahwa semua bagian akan tersusun dengan pas/tepat seperti yang direncanakan. 1 Pahami kaidah 3-4-5. Jika sebuah segitiga memiliki sisi-sisi berukuran 3, 4, dan 5 meter atau satuan lain apa pun, segitiga tersebut haruslah sebuah segitiga siku-siku dengan sebuah sudut 90º di antara sisi-sisi pendeknya. Jika Anda dapat "menemukan" segitiga tersebut di sudut kamar, Anda tahu sudut tersebut adalah siku-siku. Kaidah ini berdasarkan pada Teorema Pythagoras dalam geometri A2 + B2 = C2 untuk sebuah segitiga siku-siku. C adalah sisi terpanjang disebut hipotenusa atau sisi miring sedangkan A dan B adalah dua "kaki-kaki" yang lebih pendek[1] 3-4-5 adalah ukuran yang sangat baik untuk memeriksa karena semuanya adalah bilangan bulat, kecil. Pemeriksaan secara matematis 32 + 42 = 9 + 16 = 25 = 52. 2 Ukurlah tiga satuan dimulai dari sudut ruang ke salah satu sisi. Anda dapat menggunakan satuan meter, kaki feet, atau satuan yang lain. Berikan tanda pada ujung tiga satuan yang Anda ukur tersebut. Anda dapat mengalikan setiap bilangan dengan jumlah sama dan tetap gunakan bilangan tersebut. Cobalah 30-40-50 sentimeter jika menggunakan sistem metrik. Untuk ruang yang besar, gunakan 6-8-10 atau 9-12-15 meter atau kaki. 3Ukurlah empat satuan sepanjang sisi yang lain. Dengan menggunakan satuan yang sama, ukurlah sisi yang kedua–berharap–pada sudut 90º untuk yang pertama. Tandai ujungnya pada empat satuan. 4 Ukurlah jarak antara dua tanda yang telah Anda buat. Jika jarak tersebut adalah 5 satuan, sudut tersebut adalah sudut siku-siku.[2] Jika jarak tersebut kurang dari 5 satuan, besar sudut tersebut kurang dari 90º. Renggangkan kedua sisi tersebut. Jika jarak tersebut lebih dari 5 satuan, sudut tersebut berukuran lebih dari 90º. Dekatkan sisi-sisi tersebut secara bersamaan. Iklan Cara ini bisa lebih akurat daripada menggunakan siku tukang kayu atau pasekon, yang mungkin terlalu kecil untuk memperoleh ukuran tepat suatu sisi yang lebih panjang lagi. Makin besar satuannya, makin akurat hasil yang Anda dapat.[3] Iklan Hal yang Anda Butuhkan Meteran/pita pengukur Pensil Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
.